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Abstract In this paper, we present a model of turn-
ing operations with state-dependent distributed time
delay. We apply the theory of regenerative machine
tool chatter and describe the dynamics of the tool-
workpiece system during cutting by delay differential
equations. We model the cutting force as the resultant
of a force system distributed along the rake face of the
tool, which results in a short distributed delay in the
governing equation superimposed on the large regen-
erative delay. According to the literature on stress dis-
tribution along the rake face, the length of the chip–
tool interface, where the distributed cutting force sys-
tem is acting, is function of the chip thickness, which
depends on the vibrations of the tool-workpiece system
due to the regenerative effect. Therefore, the additional
short delay is state dependent. It is shown that involv-
ing state-dependent delay in the model does not affect
linear stability properties, but does affect the nonlinear
dynamics of the cutting process. Namely, the sense of
theHopf bifurcation along the stability boundariesmay
turn from sub- to supercritical at certain spindle speed
regions.
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1 Introduction

Many engineering problems can be described by
delay differential equations (DDEs) involving distrib-
uted delays. Examples include wheel-shimmy [37,
41], delay-coupled networks [40], predictive con-
trol systems [16,30,31] and machine tool vibrations
[11,27,32,36]. Differential equations involving state-
dependent delays also often show up in different fields
of science, such as classical electrodynamics [13], pop-
ulation models [26,35], market dynamics [6], and,
again, machine tool vibrations [3,15,23,28,29]. In this
paper, a model is presented for machining, which
involves a combination of these two types of delays:
a state-dependent distributed delay.

A model of regenerative machine tool vibrations is
analyzedwith special attention to the distribution of the
contact force between the tool’s rake face and thework-
piece. According to experiments [24,39,42,44], the
length and the shape of the force distribution depends
on the chip thickness, which implies that the corre-
sponding distributed delay in the model equation is
state dependent. The scope of this paper is to explore
whether this state-dependent delay affects the linear
and the global stability properties of the machining
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1148 T. G. Molnár et al.

operation compared to the samemodel with distributed
delay of constant length.

Linearization of state-dependent delay differential
equations (SD-DDEs) is complicated by the fact that
the solution of the system is not differentiable with
respect to the state-dependent delay (see, e.g., [20] and
the references therein). Consequently, linearization in
the traditional sense is not possible, but a linear DDE
can be constructed, which is associated with the origi-
nal SD-DDE in the sense that they have the same local
stability properties. Here, we follow the linearization
technique developed by Hartung and Turi in [19]. Note
that there are similar methods for different classes of
state-dependent delay differential equations, see, for
instance, [10,17,21]. A detailed survey about general
types of SD-DDEs is given in [18].

The outline of the paper is as follows. Section 2
briefly revises an earlier model [36] of orthogonal cut-
ting,where distributed delay are involved in the govern-
ing equation. Section 3 extends this model by consid-
ering the state dependency of the length of the distrib-
uted delay. The linear system associated with the state-
dependent delay differential equation is determined
and compared with that of the corresponding constant-
length delay model in Sect. 4. Numerical bifurcation
analysis using DDE- Biftool is performed in Sect. 5.
Finally, conclusions are drawn in Sect. 6.

2 Distributed-delay model

In this paper, we investigate the dynamics of turning
operations by analyzing the single-degree-of-freedom
model of orthogonal cutting. The mechanical model is
presented in Fig. 1. Given the modal mass m, damp-
ing c, and stiffness k corresponding to the dominant
vibration mode of the machining system, the equation
of motion of the tool can be written in the form

m

c k x
0

feed

s θ

x(t-τ)

x(t)

F

-σ-l

0 0

(a) (b)

h

h~
v
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Fig. 1 Single-degree-of-freedom model of orthogonal cutting
(a); cutting force distribution along the tool’s rake face (b)

mẍ(t) + cẋ(t) + kx(t) = Fx (t), (1)

where Fx (t) is the x-component of the cutting force
acting on the tool.

Here, we model the cutting force as the resultant
of a force system acting on the tool’s rake face. The
cutting force system is assumed to be distributed along
the interface between the chip and the tool. The length
of the contact region is denoted by l as shown in panel
(b) of Fig. 1. This model was investigated by Stépán
[36] assuming that the contact length l and the speed v

by which the chip slips along the rake face is constant
in time. Here, thismodel is extended to state-dependent
contact length.

The distributed cutting force P(t, s) acting on the
rake face can be described using the local spatial coor-
dinate s ∈ [−l, 0] running from the point of chip sep-
aration at s = −l to the tool tip at s = 0. If the speed
v is constant, then the cutting force distribution can
be written as a function of time using a local tempo-
ral coordinate θ = s/v, θ ∈ [−σ, 0]. Here, σ = l/v
denotes the time it takes for a given particle of the chip
to slip along the rake face of the tool, which is constant
in time if the assumptions l = const, v = const hold.
This way the cutting force expression becomes

Fx (t) =
∫ 0

−l
P(t, s)ds =

∫ 0

−σ

p(t, θ)dθ, (2)

where p(t, θ) = vP(t, vθ).
From this point on, the intensity p(t, θ) distributed

in the time θ is used to represent the distributed cutting
force instead of P(t, s). We assume that p(t, θ) can
be decomposed multiplicatively into a time-dependent
term FT

x (t, θ) and a time-independent term w(θ):

p(t, θ) = FT
x (t, θ)w(θ), θ ∈ [−σ, 0]. (3)

The weight function w(θ) describes the shape of the
force distribution along the tool’s rake face in case of
stable stationary cutting where the chip thickness is
constant. The function is normalized so that it satisfies

∫ 0

−σ

w(θ)dθ = 1. (4)

We assume that the same weight function can be
used for non-stationary cutting (chatter). In this case,
the surface of theworkpiece becomeswavy and the chip
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State-dependent distributed-delay model 1149

thickness h(t + θ) varies in time as a function of t and
changes along the rake face as a function of θ . There-
fore, the chip thickness variation affects the cutting
force, which is involved in the term FT

x (t, θ) describ-
ing themagnitude of force distribution.We assume that
the magnitude FT

x (t, θ) of the cutting force distribution
can be given as a function of the chip thickness using
the well-known three-quarter rule [1], namely

FT
x (t, θ) =

{
Kahq(t + θ) if h(t + θ) ≥ 0,
0 if h(t + θ) < 0,

(5)

where K is the cutting coefficient to be determined
by experiments, q = 3/4 is the cutting force expo-
nent, and a is the width of cut. The case h(t + θ) < 0
applies when the tool loses contact with the workpiece
due to large-amplitude chatter. Further on, we exclude
this case and assume h(t + θ) ≥ 0, that is, the tool
remains in cut during the entire machining operation.
Note that the dependence of the cutting force Fx on the
vibration velocity ẋ is neglected here. Therefore, this
model does not describe the friction-induced stick-slip
phenomenon [29].

According to the theory of regenerativemachine tool
chatter, the uncut chip thickness h(t) at the tool tip
depends on the actual position of the cutting tool and
the position at the previous cut:

h(t) = h0 + x(t − τ) − x(t), (6)

where h0 is the prescribed uncut chip thickness, which
is equal to the feed per revolution in case of orthog-
onal cutting, whereas τ is the regenerative delay,
which is now equal to the rotation period and can be
expressed with the angular velocity Ω of the work-
piece: τ = 2π/Ω . Experiments show [24,39] that the
chip thickness h̃(t, θ) along the rake face (also called
the deformed chip thickness) is proportional to the
shifted uncut chip thickness h(t +θ) (also called unde-
formed chip thickness): h̃(t, θ) = Ch(t + θ), where
1 < C < 10 is a constant depending primarily on the
workpiece material and the rake angle. Thus,

h̃(t, θ)=C
(
h0 + x(t − τ + θ)− x(t+ θ)

)
, θ∈[−σ, 0].

(7)

Substituting the cutting force expression given by
Eqs. (2)–(6) back into the equation of motion (1), and
dividing by the modal mass m, we obtain

ẍ(t) + 2ζωn ẋ(t) + ω2
nx(t)

= Ka

m

∫ 0

−σ

[
h0 + x(t−τ + θ)−x(t + θ)

]q
w(θ)dθ,

(8)

where ωn = √
k/m denotes the natural angular fre-

quency of the undamped system and ζ = c/(2
√
km)

is the damping ratio. We can see that Eq. (8) is a delay
differential equation with two distributed-delay terms
over [−τ −σ,−τ ] and [−σ, 0]. The kernelw(θ) of the
distributed-delay terms is determined by the shape of
force distribution along the tool’s rake face at stationary
cutting.

3 State-dependent delay model

Equation (8) has already been derived by Stépán [36].
Now, we improve his model by recognizing that the
size l of the chip–tool interface is not constant, but is
a function of the time-varying uncut chip thickness h.
According to experimental results presented in [24,39,
42,44], the relation between the contact length and chip
thickness can be described using a linear (or shifted
linear) function in a wide range of uncut chip thickness
values. Therefore, we assume that the contact length is
proportional to the uncut chip thickness at the tool tip:

l(t) = Ah(t) = A
(
h0 + x(t − τ) − x(t)

)
. (9)

Since the cutting experiments are usually performed
under chatter-free conditions, the measured constant
A is actually the ratio of the stationary contact length
l0 and the prescribed chip thickness h0. According to
measurements reported in [24,39,42,44], this ratio is
in the range 2 < A < 20 depending on the workpiece
material (e.g., A ≈ 5 for steel, A ≈ 10 for copper in
[42], and A ≈ 20 for aluminum in [24]).

Based on Eq. (9), the contact length l depends on
the position of the tool. Thus, we will emphasize the
state dependency by the notation l = l(xt ), where the
function xt (ϑ) = x(t + ϑ) represents the tool’s posi-
tion over the delay period ϑ ∈ [−ρ, 0], and ρ is the
maximum delay that can occur in the system.

Furthermore, we keep the assumption that the chip
slips along the rake face by a constant speed v. From
Eq. (9) it follows that the additional short delay is also
state dependent:
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1150 T. G. Molnár et al.

σ(xt ) = l(xt )

v
= A

v

(
h0 + x(t − τ) − x(t)

)
. (10)

Note that in [36], itwas assumed that the short delayσ is
proportional to the regenerative delay τ :σ = ετ , where
ε is a small constant value. If we simplify Eq. (10)
by assuming stationary cutting with constant contact
length l0 = Ah0 and assuming that v is equal to the
constant cutting speed, v = ΩD/2 = Dπ/τ , then we
get the same relation σ = ετ with ε = Ah0/Dπ . Here,
D denotes the tool diameter; hence, ε is equivalent to
the ratio of the contact length l0 = Ah0 and the work-
piece perimeter Dπ . Typical values of this ratio are in
the range 0.0005 < ε < 0.05 [5,7].However, in case of
the state-dependent short delay described by Eq. (10),
the ratio σ(xt )/τ = ε(xt ) is no longer constant but
state dependent.

Since the delay σ(xt ) varies according to the tool
position, the domain [−σ(xt ), 0] and the magnitude of
the kernel function w(θ) also changes. Therefore, the
kernel function can be written as

w(θ) = 1

σ(xt )
f

(
θ

σ (xt )

)
, (11)

where f is a function, which characterizes the shape
of the stationary force distribution along the tool’s rake
face independent of the state xt . It is reasonable to intro-
duce a coordinate θ̂ = θ/σ(xt ) ∈ [−1, 0], which is
interpreted on a fixed domain independently of xt . Due
to Eq. (4), the function f has the property

∫ 0

−1
f
(
θ̂
)
dθ̂ = 1. (12)

The shape f (θ̂)of the force distribution canbe deter-
mined based on the results of stress distribution mea-
surements along the tool’s rake face. Summaries of the
experimental results can be found in [2,25,45]. In case
of zero rake angle, the x-directional component of the
stresses on the rake face is the shear stress. According
to the literature on shear stress distribution measure-
ments, two different types of shear stress distributions
were identified. Several measurements [5,7–9,24,43]
showed that the shear stress has a plateau near the tool
tip along a certain sticking length ls, and then decays to
zero at the point of chip separation. The corresponding
shape function f (θ̂) can be approximated using a con-

θ

-1

0

(b)

θ

-1

0

(a)

-α

^ ^f f

Fig. 2 The shape of force distribution along the cutting–tool

stant and an exponential function as shown in panel (a)
of Fig. 2, and can be written in the form

f (θ̂) =

⎧⎪⎪⎨
⎪⎪⎩

1 − e−α+1

2 − (α + 1)e−α+1 if θ̂ ∈ [−α, 0],
1 − eθ̂+1

2 − (α + 1)e−α+1 if θ̂ ∈ [−1,−α),

(13)

where α = ls/ l denotes the sticking length to contact
length ratio.According to other shear stress distribution
measurements [4,8], the shear stress initiates from a
small value at the tip, reaches amaximum in themiddle
of the contact region, and then decays to zero. We can
approximate this function by a half-sine wave:

f (θ̂) = −π

2
sin

(
πθ̂

)
, (14)

which is also shown in panel (b) of Fig. 2.
Equation (11) shows the form of the kernel w(θ),

which can be substituted back into Eq. (8). The result-
ing equation of motion becomes

ẍ(t) + 2ζωn ẋ(t) + ω2
nx(t)

= Ka

m

∫ 0

−σ(xt )

[
h0 + x(t − τ + θ) − x(t + θ)

]q

× 1

σ(xt )
f

(
θ

σ (xt )

)
dθ, (15)

where σ(xt ) must be substituted from Eq. (10). The
governing equation (15) is a delay differential equa-
tion containing two state-dependent distributed-delay
terms. Note that the state-dependent short delay σ(xt )
appears in the governing equation (15) explicitly. Scal-
ing the integral term using θ̂ = θ/σ(xt ), one obtains
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State-dependent distributed-delay model 1151

ẍ(t) + 2ζωn ẋ(t) + ω2
nx(t)

= Ka

m

∫ 0

−1

[
h0 + x(t − τ + θ̂σ (xt )) − x(t + θ̂σ (xt ))

]q

× f
(
θ̂
)
dθ̂ , (16)

which does not contain the term σ(xt ) explicitly
any more. Note that state-dependent delay differential
equations are always nonlinear, since the state appears
in its ownargument. Thus,Eqs. (15) and (16)would still
be nonlinear even if the cutting exponent was q = 1. In
the next section, we derive the linear delay differential
equation associated with Eq. (15).

4 Associated linear system

The associated linear system, whose local stability
properties are equivalent to the original state-dependent
delay differential equation, is determined using the
method published in [19]. For this purpose, we write
Eq. (15) in the form investigated in [19]. First, we intro-
duce the coordinate x̂(t) shifted to the equilibrium x of
Eq. (15):

x(t) = x + x̂(t), x = Kahq0
mω2

n
. (17)

Accordingly, Eq. (15) can be written in the form

¨̂x(t) + 2ζωn
˙̂x(t) + ω2

n x̂(t)

= Ka

m

∫ 0

−σ(x̂t )

[(
h0 + x̂(t − τ + θ) − x̂(t + θ)

)q − hq0

]

× 1

σ(x̂t )
f

(
θ

σ (x̂t )

)
dθ, (18)

where property (12) of f was taken into account when
moving hq0 inside the integral. The equilibrium of
Eq. (18) is therefore x̂(t) ≡ 0.

Then, we replace the state-dependent lower limit of
the integration by a constant using the Heaviside step
function H in the kernel of the distributed-delay term:

¨̂x(t) + 2ζωn
˙̂x(t) + ω2

n x̂(t)

= Ka

m

∫ 0

−σmax

[[
h0 + x̂(t − τ + θ) − x̂(t + θ)

]q − hq0

]

× 1

σ(x̂t )
f

(
θ

σ (x̂t )

)
H

(
θ + σ(x̂t )

)
dθ, (19)

where σmax = ρ − τ is the maximal length of the
additional short delay. Finally, we expand the term

[
h0 + x̂(t − τ + θ) − x̂(t + θ)

]q into Taylor series
around h0 and obtain

¨̂x(t) + 2ζωn ˙̂x(t) + ω2
n x̂(t)

= Ka

m

∫ 0

−σmax

[
x̂(t − τ + θ) − x̂(t + θ)

]

×
[
qhq−1

0 + 1

2
q(q − 1)hq − 2

0
[
x̂(t − τ + θ)− x̂(t + θ)

]+h.o.t.

]

× 1

σ(x̂t )
f

(
θ

σ (x̂t )

)
H

(
θ + σ(x̂t )

)
dθ, (20)

where h.o.t. stands for higher-order terms.
In [19], a method was proposed to determine the

equivalent linear system for a class of state-dependent
delay differential equations of form

˙̂z(t) = g
(
ẑ(t),Λ(ẑt , ẑt )

)
,

Λ(ψ,φ) =
∫ 0

−σmax

dθμ(θ,ψ)φ(θ),
(21)

where g is a continuously differentiable function satis-
fying g(0, 0) = 0 and μ(.,ψ) is of bounded variation
(see [19] for more details). Equation (20) can be repre-
sented in form (21) by introducing

ẑ(t) =
[
x̂(t)
˙̂x(t)

]
, ẑt (ϑ) = ẑ(t + ϑ), ϑ ∈ [−ρ, 0], (22)

g(U, V ) =
⎡
⎣ U2

−2ζωnU2 − ω2
nU1 + Ka

m
V

⎤
⎦ , (23)

Λ(ψ, φ) =
∫ 0

−σmax

[
φ1(−τ + θ) − φ1(θ)

]

×
[
qhq−1

0 + 1

2
q(q − 1)hq−2

0

[
ψ1(−τ + θ) − ψ1(θ)

] + h.o.t.
]

× 1

σ(ψ)
f

(
θ

σ (ψ)

)
H (θ + σ(ψ)) dθ, (24)

σ(ψ) = A

v

[
h0 + ψ1(−τ ) − ψ1(0)

]
. (25)

Here, U1, U2, φ1, and ψ1 are the corresponding ele-
ments of vectors U, φ, and ψ , respectively.

According to [19], the linear system associated with
Eq. (21) can be written in the form

u̇(t) = D1g(0, 0)u(t) + D2g(0, 0)Λ(0,ut ), (26)

where Di denotes the derivative with respect to the i th
argument (i = 1, 2), and u(t) = [ξ(t) ξ̇ (t)]T stands for
the perturbation around the trivial solution ẑ(t) ≡ 0.
The derivatives of g obtained from Eq. (23) are
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1152 T. G. Molnár et al.

D1g(0, 0) =
[

0 1
−ω2

n −2ζωn

]
, D2g(0, 0) =

[
0
Ka

m

]
.

(27)

Whereas from Eq. (24) we get

Λ(0,φ) =
∫ 0

−σmax

[
φ1(−τ + θ) − φ1(θ)

]

×qhq−1
0

1

σ
f

(
θ

σ

)
H(θ + σ)dθ, (28)

where σ denotes the constant solution for the short
delay obtained from Eq. (25):

σ = Ah0
v

. (29)

Substitution of Eqs. (27) and (28) into Eq. (26) gives

d

dt

[
ξ(t)
ξ̇ (t)

]
=

⎡
⎣ ξ̇ (t)

−ω2
nξ(t) − 2ζωn ξ̇ (t) + Kaqhq−1

0

m
I (ξt )

⎤
⎦

(30)

with

I (ξt )=
∫ 0

−σ

[
ξ
(
t − τ + θ

) − ξ
(
t + θ

)] 1

σ
f

(
θ

σ

)
dθ,

(31)

which is equivalent to the second-order linear system

ξ̈ (t) + 2ζωnξ̇ (t) + ω2
nξ(t)

= Kaqhq−1
0

m

∫ 0

−σ

[
ξ
(
t − τ + θ

)

−ξ
(
t + θ

)] 1

σ
f

(
θ

σ

)
dθ. (32)

It can be seen that Eq. (32) associated with the state-
dependent delay differential equation (15) is the same
as the linear part of model (8) with constant delay σ =
σ . Thus, the state dependency has no effect on the linear
stability of the machining operation, and the stability
charts derived in [36] are valid without any change for
the extended state-dependent delay model, too.

Note that the same linear systemcan also be obtained
by formal differentiations from Eq. (16), which has a
nontrivial equilibrium x(t) ≡ x . In order to show this,
Eq. (16) is represented in first-order form:

ż(t) =
∫ 0

−1
g (z(t), η(zt )) f (θ̂)dθ̂ , (33)

where

z(t) =
[
x(t)
ẋ(t)

]
, zt (ϑ) = z(t + ϑ), ϑ ∈ [−ρ, 0], (34)

g (z(t), η(zt )) =
[

ẋ(t)

−2ζωn ẋ(t) − ω2
nx(t) + Ka

m
ηq(xt )

]
,

(35)

η(xt ) = h0 + x
(
t − τ + θ̂σ (xt )

) − x
(
t + θ̂σ (xt )

)
. (36)

Note that η(zt ) = η(xt ) is linear in xt . In Eq. (33),
we took advantage of property (12) of f when taking
the terms ẋ(t), −2ζωn ẋ(t), and −ω2

nx(t) inside the
integral.

The associated linear system around the constant
solution z(t) ≡ z = [x 0]T of Eq. (33) can be written
in the form

u̇(t) =
∫ 0

−1
D1g (z, η(zt )) u(t) f (θ̂)dθ̂

+
∫ 0

−1
D2g (z, η(zt ))Dη(zt )ut f (θ̂)dθ̂ . (37)

Substituting x(t) ≡ x into Eq. (10) gives the con-
stant solution (29) for the short delay. Calculation of
the derivatives in Eq. (37) results in

D1g (z, η(zt )) =
[

0 1
−ω2

n −2ζωn

]
,

D2g (z, η(zt )) =
⎡
⎣ 0

Kaqhq−1
0

m

⎤
⎦ .

(38)

The term Dη(zt )ut can be written as

Dη(zt )ut = [
Dxtη(zt ) Dẋtη(zt )

] [
ξt
ξ̇t

]

= Dxtη(zt )ξt + Dẋtη(zt )ξ̇t , (39)

where Dxtη and Dẋtη denote the Frechét derivatives
of η with respect to xt and ẋt , respectively. Taking the
Frechét derivative of both sides of Eq. (36) with respect
to xt and ẋt gives

Dxtη(zt )ξt = ξ
(
t − τ + θ̂σ

) − ξ
(
t + θ̂σ

)
,

Dẋtη(zt )ξ̇t = 0.
(40)

Substitution of Eqs. (38)–(40) into Eq. (37) and scaling
the integral by θ = σ θ̂ give Eq. (30).
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5 Numerical analysis of the nonlinear system

Although state dependency does not affect the stabil-
ity of small-amplitude vibrations, it modifies the non-
linear behavior and affects large-amplitude chatter. In
some cases, relevant qualitative changes can occur in
the dynamics of the nonlinear system due to the state-
dependent delay. For instance, it was shown in [22]
for a two-degrees-of-freedom model of turning opera-
tions that the state dependency of the regenerative delay
can change the sense of the Hopf bifurcation: at some
segments of the linear stability boundaries, the Hopf
bifurcation turns from sub- to supercritical.

We investigate the effect of state dependency in
the current model by analyzing Eq. (16) using DDE-
Biftool [14,34]. In order to accommodate the system
to DDE- Biftool, we need to approximate Eq. (16)
and transform it into a more convenient form.

First, we reduce the number of parameters by intro-
ducing the dimensionless time t̃ = ωnt , the dimen-
sionless delays τ̃ = ωnτ and σ̃ (xt ) = ωnσ(xt ), the
dimensionless position x̃ = x/h0, and the dimension-
less chip width p = Kaqhq−1

0 /(mω2
n). After dropping

the tilde, Eq. (16) can be represented in dimensionless
form as

x ′′(t) + 2ζ x ′(t) + x(t)

= p

q

∫ 0

−1

[
1 + x(t − τ + θ̂σ (xt )) − x(t + θ̂σ (xt ))

]q

× f
(
θ̂
)
dθ̂ . (41)

Note that for small spindle speeds when Ω approaches
zero, the delays become infinitely large as τ → ∞. In
order to avoid a badly scaled system caused by very
large delays, we rescale time as T = t/τ , which yields

x ′′(T ) + 2ζ τ x ′(T ) + τ 2x(T )

= pτ 2

q

∫ 0

−1

[
1 + x

(
T − 1 + θ̂ε(xT )

)

− x
(
T + θ̂ε(xT )

)]q × f
(
θ̂
)
dθ̂ , (42)

where

ε(xT ) = σ

τ

(
1 + x(T − 1) − x(T )

)
. (43)

Furthermore, since DDE- Biftool is developed
for equations with point delays, we approximate the
distributed-delay term in Eq. (42) by a sum of s point
delays as

x ′′(T ) + 2ζ τ x ′(T ) + τ 2x(T )

≈ pτ 2

q

s∑
k=1

[
1 + x

(
T − 1 − θ̂kε(xT )

)

− x
(
T − θ̂kε(xT )

)]q
fk, (44)

where

θ̂k =
(
k − 1

2

)
1

s
, fk =

∫ −(k−1)/s

−k/s
f
(
θ̂
)
dθ̂ . (45)

Finally, we expand the qth power of the bracketed term
inEq. (44) into a Taylor series around 1 up to third order
in order to avoid the infinite derivative at zero (since
q < 1). Introducing the shifted coordinate x̂(T ) =
x(T ) − p/q, we get

x̂ ′′(T ) + 2ζτ x̂ ′(T ) + τ 2 x̂(T )

≈ pτ 2
s∑

k=1

{ [
x̂
(
T − 1 − θ̂kε(xT )

) − x̂
(
T − θ̂kε(xT )

)]

+ η2

[
x̂
(
T − 1 − θ̂kε(xT )

) − x̂
(
T − θ̂kε(xT )

)]2

+ η3

[
x̂
(
T − 1 − θ̂kε(xT )

) − x̂
(
T − θ̂kε(xT )

)]3}
fk,

(46)

where η2 = (q − 1)/2, η3 = (q − 1)(q − 2)/6.
Equation (46) candirectly beused as input forDDE-

Biftool. First, numerical continuation is used to deter-
mine the local stability boundaries of the system,where
Hopf bifurcation occurs. Then, at each Hopf bifurca-
tion point, the amplitude of the arising periodic orbit is
computed and continued until the periodic oscillations
get so large that loss of contact (h(t) < 0) occurs and
Eq. (16) is not valid anymore.

The results are summarized in Fig. 3. Panels (a)
and (b) present the stability charts of the system in the
plane (Ω, p) for high and low spindle speed regions,
respectively. These diagrams were calculated using the
plateau-and-decay force distribution (13)withα = 0.4,
assuming a damping ratio ζ = 0.02, a delay ratio
σ/τ = 0.05, and a cutting exponent q = 0.75. The
distributed-delay term is approximated by s = 10 point
delays. Solid line indicates the local stability bound-
aries of the equilibrium,whereHopf bifurcation occurs.
This line coincides with the linear stability bound-
aries obtained analytically in [36] for the corresponding
constant-delay model (8); hence, the numerical analy-
sis verifies the derivation of the associated linear system
in Sect. 4.
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Fig. 3 Stability charts of
system (16) for high (a) and
low (b) spindle speed
regions; bifurcation
diagrams showing the
amplitude of periodic orbits
along the stability lobes
(c)–(g); a possible
bifurcation scenario (h)
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Panels (c)–(g) of Fig. 3 present the bifurcation dia-
grams corresponding to the 2nd, 3rd, 4th, 18th, and
24th stability lobes indicated by arrows in panels (a)
and (b). Branches of periodic solutions were computed
at discrete points along the stability lobes. The order
of the points on the stability charts and the respec-
tive order of the bifurcation curves are indicated by
arrows. In the bifurcation diagrams, we plot the ampli-
tude r = (max x̂(t) − min x̂(t))/2 of periodic orbits
born at the Hopf bifurcation as a function of the bifur-
cation parameter, the dimensionless chip width, p. In
order to see the tendency of the branches, the ampli-
tude r is normalized by the critical amplitude rcr, which
denotes the smallest amplitudewhere the tool first loses
contact with the workpiece due to the periodic oscilla-
tions. Similarly, the bifurcation parameter p is normal-
ized by its value pst at theHopf bifurcation. The dimen-
sionless chip width corresponding to rcr is denoted by
pcr (see panel (h) of the figure). Hence, in the normal-
ized plane (p/pst, r/rcr) each branch starts from point
(1, 0) and ends at point (pcr/pst, 1).

Note that the Hopf bifurcation is subcritical when a
bifurcation curve starts bending to the left, and super-
critical when it bends to the right. It can be concluded
from panels (c)–(g) of Fig. 3 that the Hopf bifurcation
changes criticality as the spindle speedΩ is decreased.
In panels (a) and (b) of Fig. 3, the subcritical segment

of the stability lobes is shown by a thin line, whereas
thick lines indicate supercriticality. The points where
the criticality turns are marked by large dots. Panel (c)
shows that the bifurcation is subcritical in the high-
speed region along the 2nd lobe. Then, the sense of
the bifurcation turns from sub- to supercritical at the
3rd lobe and remains supercritical down to the 14th
lobe (in this particular example). At low spindle speeds,
from the 15th lobe, subcritical segments appear on the
right side of the stability lobes. As the spindle speed is
decreased, the subcritical segments grow, and from the
24th lobe, the bifurcation is subcritical again.

This is an important qualitative difference from the
behavior of the constant-delay model (8) where the
bifurcation is subcritical independently of the spindle
speed, and pcr ≤ p ≤ pst holds for the branches of
periodic solutions [33]. In the constant-delay model,
consequently, there exists a bistable region at pcr <

p < pst where stable stationary cutting and large-
amplitude chatter coexist and the system becomes
unstable to large enough perturbations. It was shown
in [33] that the bistable region occupies approximately
4% of the linearly stable region for all spindle speeds.
For the state-dependent model presented here, super-
critical bifurcations also occur. Furthermore, at certain
spindle speeds, the supercritical branches turn back to
the left as shown in panel (h) of Fig. 3. Therefore, a
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bistable region can still exist for a supercritical Hopf
bifurcation: it occupies pbist < p < pst where pbist is
the leftmost point of the bifurcation curve, see panel
(h). The bistable boundary pbist is indicated by dashed
line in the stability charts in panels (a) and (b) of Fig. 3.
The bistable region itself is denoted by dark gray shad-
ing, whereas the globally stable region is indicated by
light gray. As shown in panel (b), the bistable region
grows as the spindle speed is decreased. In this sense,
the gain in the linear stability boundaries at low spindle
speeds is reduced by nonlinear effects.

6 Conclusions

In this paper, we proposed a dynamical model of turn-
ing operations where the cutting force is modeled as
a force system distributed along the chip–tool inter-
face. We described machine tool chatter using delay
differential equations with a short distributed delay
superimposed on the large regenerative point delay. As
the size of the chip–tool interface varies according to
the tool position, the distributed delay becomes state
dependent. Using the algorithm introduced in [19], we
determined the linear system which is associated with
state-dependent equation in terms of same local sta-
bility properties. We have shown that the linear sys-
tem is equivalent to that of the model with constant
delay. Thus, state dependency of the short delay does
not affect the linear stability properties of the cutting
process.

The proposed model is qualitatively different form
the one presented in [23], where a two-degrees-of-
freedom turningmodel associatedwith state-dependent
point delay was investigated. In the model in [23], it
was shown that the stability boundaries of the associ-
ated linear system differ slightly from those of the tra-
ditional model with state-independent (constant) time
delay. The reason of the difference was that the state-
dependent delay appeared explicitly in the nonlinear
equation, which resulted in an additional term in the
associated linear system. In the model proposed in this
paper, the state-dependent delay appears only in the
argument of the state variables, therefore this additional
term does not show up.

Although state dependency has no effect on the local
stability for the presentedmodel ofmachining, it affects
the nonlinear behavior. Namely, it changes the sense of
the Hopf bifurcation at the stability boundaries. The

bifurcation turns from sub- to supercritical at certain
spindle speeds.

From engineering point of view, the subcritical Hopf
bifurcation is more dangerous, since large-amplitude
vibrations can evolve in certain (linearly stable) para-
meter regions for large enough perturbations (see
[12,38]). Therefore, it is important to avoid these para-
meter regions and rather operate the cutting process
near the supercritical part of the Hopf boundaries.
From this point of view, state-dependent delay models
become relevant in finding the supercritical segments
of the stability boundaries.
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